wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan1(1+sinx1sinx1+sinx+1sinx) for 0<x<π2 then find dydx

Open in App
Solution

y=tan1(1+sinx1sinx1+sinx+1sinx)0<x<π2 dydx=?

Lets similarity inside expression tan1(f(x))

f(x)=(1+sinx1sinx1+sinx+1sinx)×(1+sinx+1sinx)(1+sinx+1sinx)

f(x)=(1+sinx)(1sinx)1+sinx+1sinx+21sin2x

f(x)=2sinx2+2cosx=sinx1+cosx

OR f(x)=(1+sinx1sinx)(1+sinx1sinx)(1+sinx+1sinx)(1+sinx1sinx)

f(x)=221sin2x2sinx=1cosxsinx=cosecxcotx

tany=cosecxcotx

sec2ydydx=cosecxcotx+cosec2x
dydx=cos2y×cosecx(cosecxcotx)
dydx=cos2ytany.×cosecx=sinycosycosecx
dydx=12sin2ycosecx=12sintan1(cosecxcotx)cosecx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon