If z=λ+3+i√(3−λ2),∀λϵR, then locus of z is a
Given: z=λ+3+i√(3−λ2)
Comparing with Z=x+iy
Simplifying we get
x=λ+3 ------(i)
⇒y=√3−λ2
⇒y2=3−λ2
⇒λ2=3−y2-----(ii)
Hence
From (i) we can say that
⇒(x−3)=λ
Squaring both the side
⇒(x−3)2=3−y2-----from (ii)
⇒(x−3)2+y2=3
Hence z lies on a circle.