The correct option is
B 3Given lines
x−57=y−71=z+3c
position vector
→a=5^i+7^j−3^k
normal vector
→b=7^i+^j+c^k
and
x−87=y−71=z−5c
position vector
→c=8^i+7^j+5^k
→c−→a=8^i+7^j+5^k−(5^i+7^j−3^k)
→c−→a=3^i+8^k
(→c−→a)×→b=∣∣
∣
∣∣^i^j^k30871c∣∣
∣
∣∣
(→c−→a)×→b=^i(−8)−^j(3c−56)+^k(3)
(→c−→a)×→b=−8^i−^j(3c−56)+3^k
distance=65.5
∣∣−8^i−^j(3c−56)+3^k∣∣√72+12+c2=65.5
√(−8)2+(−(3c−56))2+32√49+1+c2=65.5
√64+(3c−56)2+9√50+c2=65.5
√75+(3c−56)2√50+c2=65.5
75+(3c−56)250+c2=65.52
75+9c2+562−336c=65.52(50+c2)
75+9c2+3136−336c=214512.5+4290.25c2
4281.25c2+336c−211301.5=0
c=−b±√b2−4ac2a
c=−336±√3362−4(4281.25)(−211301.5)2(4281.25)
c=−336±√112896+3618538187.58562.5
c=−336±√3615951083.58562.5
c=−336±60132.778562.5
On taking (+) sign
c=59796.778562.5
c=6.98
on taking (-) sign
c=−336−60132.778562.5
c=60468.778562.5
c=7.06
So c=6 accept
and it is direction ratio so it may be
c=3 by dividing by 2
Hence option C is correct