The correct option is
A √5+√13+√10+6Equation of,
x-axis⇒x−01=y−00=z−00
y-axis⇒x0=y1=z0
z-axis⇒x0=y0=z1
xy plane ⇒z=0, yz plane ⇒x=0 ,zx plane ⇒y=0
if,x−x1l=y−y1m=z−z1n is equation of line.
(x2,y2,z2) is a point through which ⊥ is drawn on the line.
Let F be foot of ⊥ it will be (lr+x,mr+y,nr+z)
(lr+x1−x2,mr+y1−y2+nr+z1−z2) is ⊥ to (l,m,n)
∴(lr+x1−x2)l+(mr+y1−y2)m+(nr+z1−z2)n=0∴r=(x2−x1)l+(y2−y1)m+(z2−z1)nl2+m2+n2
∴ For x-axis,
(x1,y1,z1)=(0,0,0)(l,m,n)=(1,0,0)(x2,y2,z2)=(−1,2,3)∴r=−1
∴ foot of perpendicular =(−1,0,0)
Similarly,
for y-axis foot of ⊥ =(0,2,0)
for x-axis foot of ⊥ =(0,0,3)
∴d1=√(1+1)2+22+32=√13∴d2=√10d3=√5d4=3d5=1d6=2
(d1,d2,d3 are distance between point pand feets of ⊥).
∴d1+d2+d3+d4+d5+d6=√5+√13+√10+6