If dividend = x4+x3−2x2+x+1, divisor =x−1 and remainder =2, then the quotient will be
Dividend=Quotient×Divisor+Remainder
Let Quotient be q(x).
So, x4+x3−2x2+x+1=(x−1)q(x)+2
⟹x4+x3−2x2+x−1=(x−1)q(x)
x3+2x2+1x−1x4+x3−2x2+x−1−x4+x3––––––––––22x3−2x2+x−1−2x3+2x2–––––––––––––x−1−x+1––––––––0