If e1 and e2 are respectively the eccentricities of the ellipse x218+y24=1
and the hyperbola x29+y24=1,then
write the value of 2e21+e22.
We have,
x29−y24=1
⇒x232−y222=1
This equation of the hyperbola is of the
form x2a21+y2b21=1,
where,a22=9 and b22=4
∴e2=√1+b22a22
=√1+49
=√139
=√139
Now,
2e21+e22=2[√73]2+[√133]2
=2×79+139
=149+139
=14+139
=279
=3
∴2e21+e22=3