If e1 and e2 are the eccentricities of a hyperbola3x2-3y2=25 and its conjugate, then
e12+e22=2
e12+e22=4
e1+e2=4
e1+e2=2
Finding the value of the given expression:
Given equation can be rewritten as x2–y2=253
Here, a2=1,b2=1
∴e1=1+b2a2=1+1=2
The equation of the conjugate hyperbola is –x2+y2=253
∴e2=1+a2b2=1+1=2∴e12+e22=(2)2+(2)2=2+2=4
Hence, the correct answer is option (B).