If E1 and E2 are two events such that P(E1)=1/4,P(E2/E1)=1/2 and P(E1/E2)=1/4, then
Given P(E1)=1/4, P(E2/E1)=1/2 and P(E1/E2)=1/4
P(E2/E1)=P(E2∩E1)/P(E1)
12=P(E2∩E1)(1/4)
18=P(E2∩E1)
P(E2∩E1)=18
Similarly, P(E1/E2)=P(E1∩E2)/P(E2)
14=(1/8)P(E2)
P(E2)=12
Consider, P(E1).P(E2)=(14)∗(12)=18
P(E2∩E1)=18
⇒P(E1∩E2)=P(E1).P(E2)
Therefore E1 and E2 are Independent events.
Since P(E2)=2×P(E1)
⇒ E2 is twice as likely to occur as E1 in the above condition
Since, (P(E1))2=P(E2)∗P(E1∩E2)
⇒ the events P(E1∩E2),P(E1) and P(E2) are in G.P.