If e1 is the eccentricity of the conic 9x2+4y2=36 and e2 is the eccentricity of the conic 9x2−4y2=36,then
2<e22−e21<3
The conic 9x2−4y2=36 can rewritten in the following way.
9x236+4y236=1
⇒x24+y29=1
This is the standard equation of an ellipse.
∴b2=a2(1−e1)2
⇒9=4(1−e1)2
⇒(e1)2=−54
The conic 9x2−4y2=36 can rewritten in the following way:
9x236−4y29=1
⇒x24−y29=1
This is standard equation of a hyperbola
∴b2=a2(e22−1)
⇒9=4(e22−1)
⇒(e2)2=134
∴e22=134+54=2.5