Calculating e1
Equation of ellipse is 9x2+4y2=36
⇒x24+y29=1
⇒a2=4,b2=9(on comparing with standard form:x2a2+y2b2=1)
Eccentricity e1=√1−a2b2
⇒e1=√(1−49
⇒e1=√53
⇒e21=59 …(1)
Now, calculating e2
Equation of the hyperbola is 9x2−4y2=36,
⇒x24−y29=1
⇒a2=4,b2=9(on comparing with standard form:x2a2−y2b2=1)
Eccentricity e2=√1+b2a2
⇒e2=√(1+94
⇒e2=√132
⇒e22=134 ⋯(2)
Solving (1) and (2), we get
e22−e21=134−59
⇒e22−e21=117−2036
⇒e22−e21=9736
⇒e22−e21=2.69
⇒2<e22−e21<3
Hence, option (B) is correct.