wiz-icon
MyQuestionIcon
MyQuestionIcon
6
You visited us 6 times! Enjoying our articles? Unlock Full Access!
Question

If e1 is the eccentricity of the conic 9x2+4y2=36 and e2 is the eccentricity of the conic 9x24y2=36, then

Open in App
Solution

Calculating e1
Equation of ellipse is 9x2+4y2=36

x24+y29=1

a2=4,b2=9(on comparing with standard form:x2a2+y2b2=1)

Eccentricity e1=1a2b2

e1=(149

e1=53

e21=59 (1)

Now, calculating e2

Equation of the hyperbola is 9x24y2=36,

x24y29=1

a2=4,b2=9(on comparing with standard form:x2a2y2b2=1)

Eccentricity e2=1+b2a2

e2=(1+94

e2=132

e22=134 (2)

Solving (1) and (2), we get

e22e21=13459

e22e21=1172036

e22e21=9736

e22e21=2.69

2<e22e21<3

Hence, option (B) is correct.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon