wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If eg(y)eg(y)=2f(x) then dydx=

A
(1) f1(x)g1(y)1+f(x)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(2) f1(x)g1(y)11+(f(x))2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(3)f1(x)g(y)11+(f(x))2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(4) f(x)g1(y)1+f(x)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B (2) f1(x)g1(y)11+(f(x))2
eg(y)eg(y)=2f(x)
Differentiating on both sides
eg(y)g1(y)dydx+eg(y)g1(y)dydx=2f1(x)
dydx[eg(y)+eg(y)]=2f1(x)g1(y)
dydx=2f1(x)g1(y)1eg(y)+eg(y)
f(x)=eg(y)+eg(y)2
f(x)2=e2g(y)+e2g(y)24
1+f(x)2=1+e2g(y)+e2g(y)24
1+f(x)2=e2g(y)+e2g(y)2+44
1+f(x)2=(eg(y)+eg(y))222
1+f(x)2=eg(y)+eg(y)2
21+f(x)2=eg(y)+eg(y)
Now we have,
dydx=2f1(x)g1(y)1eg(y)+eg(y)
dydx=2f1(x)g1(y)121+f(x)2
dydx=f1(x)g1(y)11+f(x)2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon