If e is the eccentricity of the ellipse x2a2+y2b2=1 (a<b), then
Given standard equation of ellipse, x2a2+y2b2=1,a>b, with eccentricity e. Match the following a)Major axisi)2a(1−e2)b)Minor axisii)y=0c)Double ordinateiii)x=0d)Latus Rectum lengthiv)x=−aev)√1−b2a2
If the eccentricities of the hyperbolas x2a2−y2b2=1 and y2b2−x2a2=1 be e and e1, then 1e2+1e21=