The correct options are
A Domain of f(x) is (−∞,1)
B Range of f(x) is (−∞,1)
Given,
ex+ef(x)=e⇒ex−1+ef(x)−1=1⇒ef(x)−1=1−ex−1
Taking natural log on both sides, we get
⇒lnef(x)−1=ln(1−ex−1)
⇒f(x)−1=ln(1−ex−1)
⇒f(x)=1+ln(1−ex−1)
Now, for f(x) to be defined
⇒1−ex−1>0
⇒ex−1<1
⇒ex−1<eln1
⇒x−1<ln1
⇒x<1
Hence, the domain of f(x) is (−∞,1).
∵x∈(−∞,1)
⇒x−1∈(−∞,0)
⇒ex−1∈(0,1)
⇒ln(1−ex−1)∈(−∞,0)
⇒1+ln(1−ex−1)∈(−∞,1)
Hence, the range of f(x) is (−∞,1).