ey(x+1)=1ey=11+x⟶(1)lney=ln(11+x)y=ln(x+1)−1=−ln(x+1)dydx=−dln(x+1)dx=−1x+1
From (1) we get dydx=−ey
x2−6√3+28−sin2(πx6√3)=0x2−23√3x+27+1−sin2(πx6√3)=0(x−3√3)2+cos2(πx6√3)=0
As both are squares so both =0
x=3√3 & cos(πx6√3)=0
At x=3√3cosπx6√3=0
&x=3√3cosπ2=0
There are 3 solution. Answer A