The correct option is A (−1e,1e2)
Given equation, ey+xy=e,
As x=0⇒y=1
⇒ey dydx+xdydx+y=0 ⋯(1)
⇒dydx=−yey+x
At x=0, y=1dydx=−1e
On differentiating (1) again, we have -
ey (dydx)2+ey d2ydx2+xd2ydx2+2dydx=0
At x=0, y=1
⇒e(−1e)2+e⋅d2ydx2−2e=0
⇒e⋅d2ydx2=1e
⇒d2ydx2=1e2