If ey+xy=e then at x=0,d2ydx2=e−λ, then numerical quantity −λ should be equal to
If ey+xy=e then
ey+xy=e
On substituting x= 0, we get ey=e
y=1 when x=0
On differentiating the relation (i) we get
eydydx+1.y+x.dydx=0
On substituting, x=0, y=1 we get
ey(dydx)+1=0⇒dydx=−1e on differentiating solution (ii) we getey(dydx)2+eyd2ydx2+dydx+dydx+xd2ydx2=0
On substituting
x=0, y=1,dydx=−1eweget
=d2ydx2=1e2→λ=2
Hence, option 'A' is correct.