wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If e1 is the eccentricity of the conic 9x2 + 4y2 = 36 and e2 is the eccentricity of the conic 9x2 − 4y2 = 36, then
(a) e12 − e22 = 2
(b) 2 < e22 − e12 < 3
(c) e22 − e12 = 2
(d) e22 − e12 > 3

Open in App
Solution

(b) 2 < e22 − e12 < 3
The conic ​9x2+4y2=36 can rewritten in the following way:
9x236+4y236=1x24+y29=1
This is the standard equation of an ellipse.
b2=a21-e129=41-e12 e12=-54
The conic ​9x2-4y2=36 can rewritten in the following way:
9x236-4y236=1x24-y29=1
This is the standard equation of a hyperbola.
b2=a2e22-19=4e22-1e22=134

e22-e12=134+54=2.5

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon