The correct option is D (a+c+e)2=4(ac+ce+ea−b−d−f)
Given equation are
x2+ax+b=0 ........(1)
x2+cx+d=0...........(2)
x2+ex+f=0 ..........(3)
Let α,β be the roots of (1),β,γ be the roots of (2) and γ,α be the roots of (3)
∴α+β=−a,αβ=b...........(4)
β+γ=−c,βγ=d............ (5)
γ+α=−e,γα=f .........(6)
∴ L.H.S. =(a+c+e)2
=(−α−β−β−γ−γ−α)2
{from (4),(5),& (6)}
=(α+β+γ)2 ........(7)
R.H.S =4(ac+ce+ea−b−d−f)
=4{(α+β)(β+γ)+(β+γ)(γ+α)+(γ+α)(α+β)−αβ−βγ−γα}
{from (4), (5)& (6)}
=4(α2+β2+γ2+2αβ+2βγ+2γα)
=4(α+β+γ)2.....(8)
From (7) & (8),
=(a+c+e)2=4(ac+ce+ea−b−d−f).