Take any parallel non-zero vectors so that →a×→b=→0.
Let →a=2^i+3^j+4^k,→b=4^i+6^j+8^k.
Then,
→a×→b=∣∣
∣
∣∣^i^j^k234468∣∣
∣
∣∣=^i(24−24)−^j(16−16)+^k(12−12)=0^i+0^j+0^k=→0
It can now be observed that:
|→a|=√22+32+42=√29
∴→a≠→0
|→b|=√42+62+82=√116
∴→b≠→0
Hence, the converse of the given statement need not be true.