wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x = cos θ, y = sin3 θ, prove that yd2ydx2+dydx2=3 sin2 θ5 cos2 θ-1.

Open in App
Solution

Here,
x= cosθ and y = sin3θDifferentiating w.r.t. θ, we getdxdθ=-sinθ and dydθ=3sin2θ cosθdydx=3sin2θ cosθ-sinθ=-3sinθ cosθDifferentiating w.r.t. x, we getd2ydx2=-3cos2θ+3 sin2θdθdx=-3cos2θ+3 sin2θ-sinθNow,LHS=yd2ydx2+dydx2 = sin3θ×-3cos2θ+3 sin2θ-sinθ+-3sinθ cosθ2 =3sin2θ cos2θ-3 sin4θ+9sin2θ cos2θ =12sin2θ cos2θ-3 sin4θ =3sin2θ4cos2θ-sin2θ =3sin2θ5cos2θ-1 [ cos2+ sin2θ=1] =RHS

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon