wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x,y,z ϵ R, then the value of determinant
∣ ∣ ∣(2x+2x)2(2x2x)21(3x+3x)2(3x3x)21(4x+4x)2(4x4x)21∣ ∣ ∣
is equal to

Open in App
Solution

Evaluating the given determinant by using the column operation of determinant.

To find: Δ=∣ ∣ ∣(2x+2x)2(2x2x)21(3x+3x)2(3x3x)21(4x+4x)2(4x4x)21∣ ∣ ∣

Applying C1C1C2

=∣ ∣ ∣(2x+2x)2(2x2x)2(2x2x)21(3x+3x)2(3x3x)2(3x3x)21(4x+4x)2(4x4x)2(4x4x)21∣ ∣ ∣

=∣ ∣ ∣4.2x.2x(2x2x)214.3x.3x(3x3x)214.4x.4x(4x4x)21∣ ∣ ∣

[(a+b)2(ab)2=4ab]

=∣ ∣ ∣4(2x2x)214(3x3x)214(4x4x)21∣ ∣ ∣

Taking 4 common from C1

Δ=4∣ ∣ ∣1(2x2x)211(3x3x)211(4x4x)21∣ ∣ ∣

Here, C1 and C3 are identical columns. If any two rows or columns are identical then value of determinant is zero.

Δ=4×0=0

Hence, the value of determinant is 0.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon