Evaluating the given determinant by using the column operation of determinant.
To find: Δ=∣∣
∣
∣∣(2x+2−x)2(2x−2−x)21(3x+3−x)2(3x−3−x)21(4x+4−x)2(4x−4−x)21∣∣
∣
∣∣
Applying C1→C1−C2
=∣∣
∣
∣∣(2x+2−x)2−(2x−2−x)2(2x−2−x)21(3x+3−x)2−(3x−3−x)2(3x−3−x)21(4x+4−x)2−(4x−4−x)2(4x−4−x)21∣∣
∣
∣∣
=∣∣
∣
∣∣4.2x.2−x(2x−2−x)214.3x.3−x(3x−3−x)214.4x.4−x(4x−4−x)21∣∣
∣
∣∣
[∵(a+b)2−(a−b)2=4ab]
=∣∣
∣
∣∣4(2x−2−x)214(3x−3−x)214(4x−4−x)21∣∣
∣
∣∣
Taking 4 common from C1
⇒Δ=4∣∣
∣
∣∣1(2x−2−x)211(3x−3−x)211(4x−4−x)21∣∣
∣
∣∣
Here, C1 and C3 are identical columns. If any two rows or columns are identical then value of determinant is zero.
⇒Δ=4×0=0
Hence, the value of determinant is 0.