If equation has equal root then
b2−4ac=0
⇒22(ac+bd)2−4(a2+b2)(c2+d2)=0
⇒4(a2c2+b2+2abcd)
=4(a2c2+a2d2+b2c2+b2d2)
⇒a2c2+b2d2+2abcdd=a2c2+b2c2+a2d2+b2d2
⇒2abcd=b2c2+a2d2
⇒b2c2+a2d2−2abca=0
⇒(bc−ad)2=0
⇒ba=dc or
ab=cd