The correct option is D 29
x3−y2=0
⇒3x2−2y(dydx)=0
⇒3x2=2y(dydx)
⇒3x22y=dydx
⇒(dydx)(m2,−m3)=3×m4−2×m3
∴−(dxdy)=23m
Therefore, equation of normal at given point is,
⇒(y+m3)=23m(x−m2)
⇒3my+3m4=2x−2m2
⇒3my=2x−3m4−2m2
⇒y=2x3m−m3−23m..(1)
but given equation of normal is, y=3mx−4m3..(2)
Thus comparing (1) and (2), we get
3m=23m
⇒m2=29
Hence, option 'D' is correct.