The correct option is A acosβ
The equation of any straight line is
xcosγ+ysinγ=p
Putting x=rcosθ and y=rsinθ it becomes,
p=rcosθcosγ+rsinθsinγ=rcos(θ−γ) .............(1)
when p and γ are unknown.
The radius vector corresponding to vectorial angle α is 2acosα and that for β is 2acosβ then
From eqn(1),
p=2acosαcos(α−γ) ..............(2)
and p=2acosβcos(β−γ) ..............(3)
From eqns(2) and (3), we get
2cosαcos(α−γ)=2cosβcos(β−γ)
⇒cos(2α−γ)+cosγ=cos(2β−γ)+cosγ
⇒cos(2α−γ)=cos(2β−γ)
∴(2α−γ)=(2β−γ)
or γ=α+β
Substituting the value of γ in eqns(1) and (2), then we get
∴rcos(θ−α−β)=2acosαcosβ
∴rcos(θ−α−β)2cosα=acosβ=λ
∴λ=acosβ