The correct options are
A 4a3+27b2<0
C 4a3+27b2=0
Given equation is x3+ax+b=0
If the maximum lies above the real axis and the minimum lies below the real axis, then the equation will have all the roots real.
Let f(x)=x3+ax+b,
then for extreme values f′(x)=0
⇒3x2+a=0
f′′(x)=6x
⇒ f(−√−a3)≥0 and f(√−a3)≤0
Combining the two conditions gives
4a3+27b2≤0