The correct option is C x2+ax+bc=0
Let α,β be the roots of x2+bx+ca=0 and α,γ be the roots of x2+cx+ab=0
Now, α+β=−b and α.β=ca
Similarly, α+γ=−c and α.γ=ab
Since, α be a common root for the equations x2+bx+ca=0 and x2+cx+ab=0
∴α2+bα+ca=0 ............ (1)
And, α2+cα+ab=0 ............... (2)
On substracting from (1) to (2), we get
(α2+bα+ca)−(α2+cα+ab)=0
⇒(b−c)α−a(b−c)=0
⇒(b−c)(α−a)=0
⇒b=c or α=a (b=c not possible)
Putting α=a in equation (1), we get
a2+ba+ca=0⇒a(a+b+c)=0
⇒(a+b+c)=0⇒b+c=−a
α+β+α+γ=−(b+c)
⇒2α+β+γ=a
⇒β+γ=a−2a=−a
Now, αβ×αγ=(ca)(ab)
⇒α2βγ=a2bc
⇒βγ=bc [since, α=a]
Here, β+γ=−a and βγ=bc
So, Quadratic equation whose roots are β,γ
x2−(β+γ)x+βγ=0
⇒x2+ax+bc=0