If ex+ey=e(x+y), then dydxat(2,2) is
Step 1 : Differentiating both sides with respect to x
Given that ex+ey=e(x+y)
⇒ex+(ey)(dydx)=ex+y(1+dydx)⇒ex–ex+y=(dydx)(ex+y–ey)⇒(dydx)=(ex+y–ex)(ey–ex+y)
Step 2 :Finding the value of dydxat(2,2):
⇒dydx=(e2+2–e2)(e2–e2+2)⇒=-(e2+2–e2)(e2+2-e2)⇒=-1
Hence, the value of dydxat(2,2) is -1.
If tanθ+secθ=ex, then cosθ equals