If exp[(sin2x+sin4x+sin6x+....∞)loge2, satisfies the equation x2−9x+8=0, then the value of cosxcosx+sinx,0<x<π2 is
A
√3−12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
√3+12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A√3−12 exp [(sin2x+sin4x+sin6x+....∞)loge2]=esin2x1−sin2x⋅loge2=eloge2sin2xcos2x⇒2tan2x satisfies x2−9x+8=0⇒x=1,8∴2tan2x=1 and 2tan2x=8⇒tan2x=0 and tan2x=3⇒x=nπ and tan2x=(tanπ3)2⇒x=nπ and x=nπ±π3Neglecting x=nπ as 0<x<π2⇒x=π3∈(0,π2)∴cosxcosx+sinx=1212+√32=11+√3×√3−1√3−1⇒cosxcosx+sinx=√3−12