If expression x2−4cx+b2>0for all real values of x and a2+b2<ab, then range of the function x+ax2+bx+c2 is
A
(−∞,0)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(0,∞)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(−∞,∞)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C(−∞,∞) Letis,Wehavetheequ:x2−4cx+b2>0,anditsdiscriminateis:D<0⇒16c2−4b2<0⇒4c2−b2<0Now,x+ax2+bx+c2,anddiscriminateofx2+bx+c2⇒b2−4c2>0,soitsrootsa&βthenexpressionofx+a(x−α)(x−β)[wecanunderstandthroughgraphInthisconditionthewholelineattendsto−∞to+∞.so,wecansaytherangeofy=(−∞,∞)arerealno.andthecorrectoptionisC.