If ey+xy=e, then the value of d2ydx2forx=0is
1e
1e2
1e3
none of these
Explanation for the correct option:
Step 1: Differentiate with respect to x
Given ey+xy=e,
When x=0,y=1
eydydx+xdydx+y=0…(i)
Put x=0 and y=1, we get
dydx=-yx+ey=-1e
Step 2: Differentiate (i) again with respect to x
eydydz2+eyd2ydx2+dydx+xd2ydx2+dydx=0
⇒ d2ydx2[ey+x]=-2dydx–ey(dydx)2…(ii)
Step 3: Put x=0,y=1 and dydx=-1ein (ii)
⇒d2ydx2[e+0]=2e–ee2⇒d2ydx2e=2e–1e⇒d2ydx2e=1e⇒d2ydx2=1e2
Hence, Option ‘B’ is Correct.