If f:(–1,1)→R be a differentiable function with f(0)=–1andf'(0)=1. Let g(x)=[f{2f(x)+2}]2. Then,g'(0)is equal to
Finding the value of g'(0):
Given that f:(–1,1)→R is a differentiable function and f(0)=–1andf'(0)=1. g(x)=[f{2f(x)+2}]2g'(x)=2(f{2f(x)+2})f'{2f(x)+2})2f'(x)g'(0)=2(f{2f(0)+2})f'{2f(0)+2})2f'(0)g'(0)=2(f{2×-1+2})f'{2×-1+2})2×1g'(0)=2f(0)f'(0)2g'(0)=2×-1×1×2∴g'(0)=-4
Hence, The value of g'(0)is equal to -4