If F1, F2 makes an angle of 60∘ and 37∘ respectively with F3 as shown in the figure, and magnitude of F3 is 2N, then the magnitude of F1 and F2 respectively are (Given, −→F1+−→F2=−→F3)
A
4√3(√3+4)N and 10(√3+4)N
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2√3(√3+4)N and 10(√3+4)N
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4√3(√3+4)N and 5(√3+4)N
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4(√3+4)N and 5(√3+4)N
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A4√3(√3+4)N and 10(√3+4)N Let the magnitude be |−→F1|=xand|−→F2|=y Also, Given, −→F1+−→F2=−→F3 So, the given vectors can be shown as
Now, resolving the vectors along the axes we get |−−→F3x|=xcos60∘+ycos37∘ or, |−−→F3x|=(x2+4y5) Similarly, |−→F3y|=xsin60∘−ysin37∘ or, |−→F3y|=(√3x2−3y5)
Since, −→F3 has no component in vertical axis, so, |−→F3y|=0 ⇒(√3x2−3y5)=0 ⇒√3x2=3y5⇒x=2√3y5......(i) Also, |−−→F3x|=|−→F3| ⇒(x2+4y5)=2 ⇒2√3y10+4y5=2 ⇒y=10(√3+4) and, ⇒x=2√3y5=4√3(√3+4) Hence, the magnitude of F1 and F2 respectively are 4√3(√3+4)N and 10(√3+4)N