Let two vectors →P=f(x)^i+√2g(x)^j+√3h(x)^k and →Q=2^i−√2^j+√3^k
if θ is the angle between →P and →Q,
then
cosθ=→P⋅→Q|→P||→Q| =2f(x)−2g(x)+3h(x)√f2(x)+2g2(x)+3h2(x)×√4+2+3⇒[2f(x)−2g(x)+3h(x)]2(f2(x)+2g2(x)+3h2(x))×9≤1 [∵cos2θ≤1]⇒u2(x)≤9(f2(x)+2g2(x)+3h2(x))⇒u2(x)≤9×1⇒u2(x)≤9