If f(9) = 9, f'(9) = 4, then limx→9√f(x)−3√x−3 equals
Given that f(9) = 9, f’(9) = 4
limx→9√f(x)−3√x−3
On rationalisation we get -
=limx→9(√f(x)−3√x−3)(√x+3√x+3)(√f(x)+3√f(x)+3)
=limx→9 f(x)−f(9)x−9 . 66
=limx→9 f(x)−f(9)x−9
=f′(9)
=4