If f(a+b+1−x)=f(x)∀x∈R, where a and b are fixed positive real numbers, then 1a+bb∫ax[f(x)+f(x+1)]dx is equal to
A
b+1∫a+1f(x+1)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
b−1∫a−1f(x+1)dx
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
b+1∫a+1f(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
b−1∫a−1f(x)dx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bb−1∫a−1f(x+1)dx I=1a+bb∫ax[f(x)+f(x+1)]dx⋯(i)
using kings property, x→(a+b−x) ⇒I=1a+bb∫a(a+b−x)[f(a+b−x)+f(a+b+1−x)]dxI=1a+bb∫a(a+b−x)[f(x+1)+f(x)]dx⋯(ii)[∵f(a+b+1−x)=f(x),f(a+b−x)=f(x+1)]
Adding (i) and (ii): ⇒2I=b∫a[f(x+1)+f(x)]dx⇒2I=b∫af(x+1)dx+b∫af(x)dx
Using property b∫af(x)dx=b∫af(a+b−x)dx 2I=b∫af(a+b+1−x)dx+b∫af(x)dx⇒2I=2b∫af(x)dx⇒I=b∫af(x)dx∴I=b−1∫a−1f(x+1)dx OR I=b+1∫a+1f(x−1)dx