The correct options are
A f(x)=c1x2+c2x4, ci≠0
D f(x) is always an even function
f(a−b)+f(b−c)+f(c−a)=2f(a+b+c)
Put a=b=c=0
⇒f(0)=0
Put b=c=0, we have f(a)+f(−a)=2f(a)
⇒f(a)=f(−a)
So, f is an even function.
Let f(x)=c0+c1x2+c2x4+...+cmx2m
We know that
ab+bc+ca=0
⇒a=−bcb+c
Put b=(1+√3)x and c=(1−√3)x
⇒a=x
f(−√3x)+f(2√3x)+f(−√3x)=2f(3x)
Therefore, comparing the coefficient of x2m, we get
2(−√3)2m+(2√3)2m=2⋅32m
⇒2⋅3m+12m=2⋅32m
⇒2+4m=2⋅3m
This holds for m=1 and m=2,
When m=3
43=642⋅33=54
So, 2+4m>2⋅3m
Therefore,
2+4m>4m>2⋅3m for m≥3
Therefore, f(x) must be of the form
c1x2+c2x4