The correct options are
A f(18∘)=−10
B f(36∘)=−10
C f(π4)=−8
D f(π8)=−8
Given : f(A)=8∑r=1tanrA⋅tan(r+1)A
We know that
tan(r+1)A=tanrA+tanA1−tanrAtanA⇒tan(r+1)A−tan(r+1)AtanrAtanA=tanrA+tanA⇒tan(r+1)AtanrAtanA=tan(r+1)A−tanrA−tanA
Now,
f(A)=8∑r=1(tan(r+1)A⋅tanrA⋅tanA)cotA⇒f(A)=8∑r=1(tan(r+1)A−tanrA−tanA)cotA⇒f(A)=cotA(8∑r=1tan(r+1)A−tanrA)−8∑r=11⇒f(A)=cotA(tan9A−tanA)−8⇒f(A)=cotAtan9A−9
Therefore,
f(18∘)=tan(9×18∘)cot18∘−9⇒f(18∘)=−tan(18∘)cot18∘−9⇒f(18∘)=−10
f(36∘)=tan(9×36∘)cot36∘−9⇒f(36∘)=−tan(36∘)cot36∘−9⇒f(36∘)=−10
f(π4)=cotπ4tan9π4−9⇒f(π4)=−8
f(π8)=cotπ8tan9π8−9⇒f(π8)=−8