wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f and g are two functions having derivative of order three for all x satisfying f(x)g(x)=C (constant) and f′′fAf′′fg′′g+3g′′g=0 Then A is equal to.

Open in App
Solution

The given equation is:

f(x)g(x)=C

Differentiating the equation we get,

f(x)g(x)+f(x)g(x)=0

f(x)g(x)=f(x)g(x)

Again differentiating the equation we get,

f(x)g(x)+f(x)g′′(x)+f(x)g(x)+f′′(x)g(x)=0

2f(x)g(x)+f(x)g′′(x)+f′′(x)g(x)=0

Differentiating the equation for the 3rd time we get,

2f′′(x)g(x)+2f(x)g′′(x)+f(x)g′′′(x)+f(x)g′′(x)+f′′(x)g(x)+f′′′(x)g(x)=0

3f(x)g′′(x)+3f′′(x)g(x)+f(x)g′′′(x)+f′′′(x)g(x)=0

Dividing the whole equation by f'(x)g(x) and then using the equation obtained from 1st derivative we get,

3f(x)g′′(x)+3f′′(x)g(x)+f(x)g′′′(x)+f′′′(x)g(x)f(x)g(x)=0

f′′′(x)g(x)+3f(x)g′′(x)f(x)g(x)3f′′(x)g(x)+f(x)g′′′(x)f(x)g(x)=0

f′′′f+3g′′gg′′′g3f′′f=0

A=3 ....Answer

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon