f(x)g(x)=C
Differentiating the equation we get,
f(x)g′(x)+f′(x)g(x)=0
⇒f(x)g′(x)=−f′(x)g(x)
Again differentiating the equation we get,
⇒f′(x)g′(x)+f(x)g′′(x)+f′(x)g′(x)+f′′(x)g(x)=0
⇒2f′(x)g′(x)+f(x)g′′(x)+f′′(x)g(x)=0
Differentiating the equation for the 3rd time we get,
⇒2f′′(x)g′(x)+2f′(x)g′′(x)+f(x)g′′′(x)+f′(x)g′′(x)+f′′(x)g′(x)+f′′′(x)g(x)=0
⇒3f′(x)g′′(x)+3f′′(x)g′(x)+f(x)g′′′(x)+f′′′(x)g(x)=0
Dividing the whole equation by f'(x)g(x) and then using the equation obtained from 1st derivative we get,
⇒3f′(x)g′′(x)+3f′′(x)g′(x)+f(x)g′′′(x)+f′′′(x)g(x)f′(x)g(x)=0
⇒f′′′(x)g(x)+3f′(x)g′′(x)f′(x)g(x)−3f′′(x)g′(x)+f(x)g′′′(x)f(x)g′(x)=0
⇒f′′′f′+3g′′g−g′′′g′−3f′′f=0