3+5+7+..............=n2[2,3+(n−1).2]=n(n+2)
20+21+22+..........+2n−1=1.(2n−1)2−1=2n−1
=16(6.2n−6)=16(3.2n+1−6)
1.n+2(n−1)+3(n−2)+3(n−2)+.....+n(n−1)
= 1.(n+1-1)+2(n+1-2)+3(n+1-3)+......
= (n+1)(1+2+3+.........)−(12+22+32+..........)
=(n+1)n(n+1)6−n(n+1)(2n+1)6
=n(n+1)6[3n+3−(2n+1)]
=16n(n+1)(n+2)
Thus putting r= 1,2,3, .......n. we have n∑r=1△r becomes a determinant in which C1 and C2 become identical.
Hence n∑r=0△r=0.