1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Period of Trigonometric Ratios
If f:IR→ IR...
Question
If
f
:
I
R
→
I
R
is defined by
f
(
x
)
=
7
+
c
o
s
(
5
x
+
3
)
for
x
∈
I
R
, then the period of
f
is
A
2
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2
π
5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
D
2
π
5
f
(
x
)
=
7
+
c
o
s
(
5
x
+
3
)
Adding a constant term to a function shifts the graph above, but doesn't change the period of the function.
So, the period of the function is same as that of the period of the function
c
o
s
(
5
x
+
3
)
Adding the term 3 inside the angle whose cosine is taken, shifts the graph in the left direction, without affecting the period.
So, the period ultimately has to be taken of
c
o
s
(
5
x
)
Since the period of
c
o
s
(
x
)
is
2
π
, the period of
c
o
s
(
n
x
)
would be
2
π
n
The answer thus becomes
2
π
5
Suggest Corrections
0
Similar questions
Q.
If
f
:
I
R
→
I
R
is defined by
f
(
x
)
=
2
x
+
3
, then
f
−
1
(
x
)
Q.
Let
I
R
be the set of real numbers and
f
:
I
R
→
I
R
be such that for all
x
,
y
∈
I
R
,
|
f
(
x
)
−
f
(
y
)
|
≤
|
x
−
y
|
3
. Prove that
f
is a constant function.
Q.
Let
f
:
I
R
→
I
R
be defined as
f
(
x
)
=
|
x
|
+
∣
∣
x
2
−
1
∣
∣
.The total number of points at which f attains either a local maximum or local minimum is
Q.
If
f
:
R
→
R
is defined as
f
(
x
)
=
10
x
+
7
. Find the function
g
:
R
→
R
, such that
g
o
f
=
f
o
g
=
I
R
.
Q.
Let
f
:
R
→
R
be defined as f(x) = 10x + 7. The function
g
:
R
→
R
such that gof = fog =
I
R
. Then g(2017) =