If f is a continuous function then, ∫2a0f(x)dx=∫a0f(x)dx+∫2a0f(2a−x)dx.
A
True
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
False
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is B False Let us try to see using the properties of definite integrals whether we are able to reach at the given equation. LHS=∫2a0f(x)dx =∫a0f(x)dx+∫2aaf(x)dx (using property) ….(1) Since it’s (2a - x) instead of (x) on the RHS we will try to make a substitution, x = 2a - t i.e., t = 2a - x dx = -dt Lower limit = 2a - a = a. Upper limit = 2a - 2a = 0 ∴∫2aaf(x)dx=∫0af(2a−t)(−dt) =∫a0f(2a−t)dt (using property) =∫a0f(2a−x)dx (using property) (2) From (1) and (2) LHS= ∫a0f(x)dx+∫a0f(2a−x)dx ≠ RHS ∴ The given statement is false.