Given : f(xy)=f(x)+f(y)+x+y−1xy
Putting y=x=1, we get
f(1)=2f(1)+1⇒f(1)=−1
Also, f′(1)=2
Now, we know that
f′(x)=limh→0f(x+h)−f(x)h⇒f′(x)=limh→0f(x(1+hx))−f(x)h⇒f′(x)=limh→0f(x)+f(1+hx)+x+1+hx−1x(1+hx)−f(x)h⇒f′(x)=limh→0f(1+hx)+x2+hx(x+h)h⇒f′(x)=limh→0x(x+h)f(1+hx)+x2+hh(x2+hx)⇒f′(x)=1x2limh→0x2[f(1+hx)+1]+h[xf(1+hx)+1]h⇒x2f′(x)=limh→0x[f(1+hx)−f(1)]hx+(1−x) (∵f(1)=−1)⇒x2f′(x)=xf′(1)+(1−x)⇒f′(x)=1+xx2⇒f(x)=−1x+ln|x|+c
Putting x=1, we get
−1=−1+0+c⇒c=0
Therefore, f(e100)=−1e100+100
⇒[f(e100)]=99 (∵1e100∈(0,1))