The correct option is C {x∈R:−2<x<∞}
3f(x)+2−x=4
⇒3f(x)=4−2−x
⇒f(x)=log3(4−2−x)
Now, 4−2−x>0
⇒2−x<22
⇒−x<2[∵For a>1, ax<ay⇒x<y]
⇒x>−2
∴ Domain ={x∈R:−2<x<∞}
Alternate solution:
3f(x)+2−x=4⇒3f(x)=4−2−x
As 3f(x)>0, so
4−2−x>0⇒4⋅2x−12x>0⇒4⋅2x−1>0 (∵2x>0)⇒2x>14⇒x>−2