If f is a function satisfying f(x+y)=f(x) f(y) for all, x,yϵN such that f(1) = 3 and ∑nx=1f(x)=120, find the value of n.
∵f(1)=3 and f(x+y)
=f(x).f(y) for all x,yϵN ..... (1)
Putting x=1 and y=1 in ..... (1)
f(1+1)=f(1).f(1)
⇒f(2)=3×3=9
Putting x=1 and y=2, in (1)
f(1+2)=f(1).f(2)
⇒f(3)=3×9=27
Putting x=1 and y=3, in (1)
f(7+3)=f(1).f(3)
⇒f(4)=3×27=81
Now, ∑nx=1f(x)=120
∴f(1)+f(2)+f(3)+……+f(n)=120
⇒∑nn=1f(x)=3+9+27+81+……+ to n terms = 120
⇒3(3n−1)3−1=120
⇒3(3n−1)=120×2=240
⇒3n−1=2403=80
⇒3n=80+1=81=34
⇒n=4