If f is a real function satisfying f(x+1x)=x2+1x2 for all xϵR−{0}, then write the expression for f(x).
We have, f(x+1x)=x2+1x2 Now, =x2+1x2=(x+1x)2−2 [∵(a+b)2=a2+b2+2ab] ⇒f(x+1x)=(x+1x)2−2⇒f(x)=x2−2, where |x|≥2