If f is a real valued function given by f(x)=27x3+1x3 and α,β are roots of 3x+1x=2. Then,
f(β)=−10
Given:
f(x)=27x3+1x3⇒f(x)=(3x+1x)(9x2+1x2−3)⇒f(x)=(3x+1x)((3x+1x)2−9)⇒f(α)=(3α+1α)((3α+1α)2−9)
Sin α and β are the roots of 3x+1x=2
3α+1α=2 and 3β+1β=2
⇒f(α)=2((2)2−9) and
f(β)=2((2)2−9)
⇒f(α)=f(β)=2[(2)2−9]=2[4−9]=−10∴(c)f(β)=−10