The correct option is C 2x3+x
2x∫1f(t) dt+xk=xf(x)
Differentiating both sides of w.r.t. x, we get
⇒2f(x)+kxk−1=xf′(x)+f(x)⇒f′(x)−f(x)x=kxk−2⇒dydx−yx=kxk−2
Integrating factor
=e−∫1/x dx=e−lnx=1x
So, the solution of the differential equation is
yx=∫kxk−3 dx+C
When k=2, then
yx=∫kx dx+C⇒yx=klnx+C
Putting x=1
⇒C=1
Therefore at k=2, the function becomes
f(x)=2xlnx+x
When k≠2, then
⇒yx=kxk−2k−2+C
Putting x=1
⇒1=kk−2+C⇒C=22−k⇒f(x)=kxk−1k−2+2x2−k
For k=1,
f(x)=2x−1
For k=3,
f(x)=3x2−2x
For k=4,
f(x)=2x3−x