If f is an odd function. limx→0f(x)exists and is equal to
Open in App
Solution
It is given that, limx→0f(x) exists. ⇒limx→0−f(x)=limx→0+f(x)⇒limh→0f(0−h)=limh→0f(0+h)⇒limh→0f(−h)=limh→0f(h)⇒−limh→0f(h)=limh→0f(h)[∵f(x)isanoddfunctionf(−x)=−f(x)]⇒2limh→0f(h)=0⇒limh→0f(h)=0limx→0f(x)=0