f(k)=1∫−1√1−x2√k+1−xdx
Putting x→−x, we get
⇒f(k)=1∫−1√1−x2√k+1+xdx
Adding both, we get
⇒f(x)=√k+11∫−1√1−x2k+(1−x2)dx⇒f(x)=2√k+11∫0√1−x2k+(1−x2)dx
Putting x=sinθ⇒dx=cosθ dθ f(k)=2√k+1π/2∫0cos2θk+cos2θdθ=2√k+1π/2∫0k+cos2θ−kk+cos2θdθ=2√k+1⎡⎢
⎢⎣π/2∫0dθ−kπ/2∫0dθk+cos2θ⎤⎥
⎥⎦=2√k+1⎡⎢
⎢⎣π2−kπ/2∫0sec2θ dθ1+k(1+tan2θ)⎤⎥
⎥⎦
Putting tanθ=z⇒sec2θ dθ=dz
=2√k+1⎡⎢⎣π2−k∞∫0dz1+k+kz2⎤⎥⎦=2√k+1⎡⎢
⎢
⎢
⎢
⎢⎣π2−kk+1∞∫0dz1+(√kk+1z)2⎤⎥
⎥
⎥
⎥
⎥⎦=2√k+1[π2−√kk+1(tan−1(√kk+1z))∞0]=2√k+1[π2−π2√k√k+1]∴f(k)π=√k+1−√k
Now,
99∑k=0f(k)π=99∑k=0(√k+1−√k)=(√1−0)+(√2−√1)+…+(√100−√99)=√100−0=10