If f(n)=2.cosnx.∀nϵN.thenf(1).f(n+1)−f(n)=
We have,
f(1)=2cosx
f(n+1)=2cos(n+1)x
f(n)=2cosnx
Now,
f(1)f(n+1)=2[cos(n+2)x+cosnx]
Hence,
f(1)f(n+1)−f(n)=2cos(n+2)x
2cos(n+2)x=f(n+2)